基于小波包分解的混合储能技术在平抑风电场功率波动中的应用
时间:16-05-12来源:中国电力化工网 点击: 次
基于小波包分解的混合储能技术在平抑风电场功率波动中的应用 摘要:在充分分析风电功率幅频特性的基础上,提出基于小波包分解的混合储能技术平抑风电场输出功率波动的方法。采用小波包分解理论对风电场输出功率信号进行多尺度分解,得到反映并网功率信号的低频信号和接入储能系统的高频信号;根据不同类型储能系统的特点,将高频信号再次进行划分,分别选择与其频率范围适应的电池和超级电容器储能设备,建立了基于混合储能系统的风电场输出功率平滑控制模型;与单类型电池储能系统功率平滑效果进行了对比。仿真实例表明:该方法能够有效地抑制风电场输出功率的波动,提高储能电池的使用寿命,具有一定的工程应用价值。 引言 由于气候与地理环境等因素的影响,风能具有出力间歇性与随机性[1]的特点,风电场输出功率直接并入电网将对电力系统的稳定性、电网频率、电能质量、发电计划和调度等方面产生较大的影响[2-5],从而严重制约了风能的利用及风电的大规模发展。因此,如何有效平抑风电场输出功率波动问题具有重要的现实意义。 针对这一问题,国内外学者做出了积极的研究,主要集中在两种方式。第1种是通过调节桨距角[6]和改变发电机转速[7]来调整风机输出功率以实现单台风力发电机组输出功率平滑的目的,然而风电场各机组之间的输出功率有可能互补,同时也有可能相互叠加,从而导致风电场总的输出功率存在较大波动,在一定程度上降低了风能的有效利用率[8]。另一种则是考虑风电场的整体输出功率,在风电场出口并网母线位置配备储能系统[9-10],利用储能系统的吞吐能力起到平抑风电功率波动的作用,即当风电出力骤升时,储能装置吸收功率,反之则输出功率。 储能系统多种多样,各自具有不同的特点,而且在功率平滑方面也得到了不同程度的应用。文献[11]提出基于低通滤波原理平抑风电功率中指定频率分量为目标,研究了储能系统用于平抑风电功率波动控制的有效性,但该方法缺少对储能系统的约束条件,尤其是低通滤波器的时间常数选择将直接影响风电功率的平滑效果及储能容量的配置。文献[12]提出了基于风电场功率短期预测技术的全钒电池储能系统运行控制策略以平抑风电场输出功率的波动,但该方法增加了电池的循环次数,不利于电池的使用寿命。文献[13]在计及电池寿命的基础上,采用基于电池荷电状态的可变滤波时间常数的储能控制方法,但该方法没有考虑当前风电功率波动的强弱作为滤波时间常数的约束条件之一,间接地影响了电池的充放电次数。文献[14-16]利用蓄电池和超级电容器混合储能系统平抑风电场输出功率的波动,按照相应准则实现电池和超级电容器之间的功率分配,在有效抑制风电场输出功率波动的同时延长电池的使用寿命。 综上所述,将不同类型储能系统进行组合以达到优势结合、缺陷互补的混合储能系统能够更加有效地平抑风电场输出功率的波动。本文在分析风电场输出功率幅频特性的基础上,提出一种基于小波包分解理论的混合储能系统平抑风电场输出功率波动的方法。首先对风电场输出功率信号进行多尺度小波包分解,得到反映并网功率信号的低频信号和接入储能系统的高频信号;然后选择蓄电池和超级电容器作为储能设备,根据其各自的不同特点[17],将高频信号再次进行划分,分别选择与其频率范围适应的储能方式以组成混合储能系统进行风电场输出功率的平滑。最后,通过现场采集到的风电功率数据验证了该方法的有效性,为储能电池和超级电容器两种储能介质间能量分配提供了一定的理论依据。 1基于小波包分解理论的混合储能功率平滑方法 1.1风电功率信号的频谱分析 采用某99MW风电场2010年全年实际输出功率数据,采样时间为1min,直接调用Matlab工具箱中的FFT函数对该数据进行快速傅里叶变换得到幅频特性曲线,如图1所示。 由图1可知,风电场输出功率的能量主要集中在低频部分(0~10−4Hz),其高频部分能量较低。这与风速特性相吻合,高频变化的风速幅值很小,而低频变化风速幅值较大,因此将低频功率信号作为风电并网的期望功率值,高频功率信号则由储能系统进行平滑,即可在满足并网功率平滑的同时,又兼顾对储能系统性能的影响。因此,本文采用小波包分解方法将风电场输出功率信号分解成高频信号和低频信号。 |